
Guide: Using PGC GitHub: NDVI
URL: https://www.pgc.umn.edu/guides/pgc-coding-and-utilities/using-pgc-github-ndvi/
Last Modified: December 17, 2019
Export Date: April 27, 2024

Introduction
In this guide, you will learn what software you need to run the pgc Normalized Difference Vegetation Index (NDVI)
script, where to access the required software, and how to use the script with a sample workflow.

The PGC hosts several open source codes on GitHub, a company that hosts software development. Projects, source
codes, changes and versions can be accessed in PGC’s Repositories online.

Quick Links

Polar Geospatial Center GitHub Homepage
Polar Geospatial Center GitHub Imagery Utilities
Mac and Linux: Installation of PGC’s GDAL Stack
Windows: OSGeo4W Installation

About
The Normalized  Difference Vegetation  Index  (NDVI)  is  a  numerical  indicator  used to  determine  the  presence and
state of vegetation. This index uses the normalized difference between the near-infrared band and the red band of
a multispectral  image. The reason these two bands are used is due to how these wavelengths interact with
vegetation. Chlorophyll in plant cells strongly absorbs red wavelengths, while the leaf cell structure strongly reflects
near-infrared wavelengths. The formula for NDVI is as follows:

NDVI = (NIR – RED) ⁄ (NIR + RED)

Generally, the output of this index is saved as 32-bit float, which constrains the range of possible values between -1
and 1. Values near one indicate green vegetation, values near zero indicate dead vegetation or soil, and negative
values usually correspond with water.

The Polar Geospatial Center has developed a Python script that batch calculate NDVI from multispectral satellite
imagery. This tool is designed to run on data that has already been orthorectified using the pgc_ortho.py utility.

Requirements
The  pgc_ndvi.py  tool  can  run  within  a  personal  computing  environment  (desktop  computer)  or  in  a  cluster
computing environment. The code is built to run primarily on a Linux HPC cluster running Maui/Torque for queue
management. This tool will also work on a windows platform.

Please note that the code is tightly coupled to the systems on which it was developed. You should have no
expectation of it running on another system without some patching.

https://www.pgc.umn.edu/guides/pgc-coding-and-utilities/using-pgc-github-ndvi/
https://github.com/PolarGeospatialCenter
https://github.com/PolarGeospatialCenter/imagery_utils
https://github.com/PolarGeospatialCenter/gdal-full
https://trac.osgeo.org/osgeo4w/


Software:
This tool is built on the GDAL/OGR image processing API using Python. GDAL 2.1 is required for this tool to function.

If you are using a Linux system you will need to download the PGC optimized GDAL toolchain. The list of software
installed with the optimized GDAL toolchain can be found here. A script is provided to install all required packages.
If you have not ran a shell script in a Linux terminal follow this guide here. After installation of the PGC optimized
GDAL toolchain, the NDVI tool can be ran through the Linux terminal. There are plenty of free, online tutorials for
Linux terminal if you are new to command line interfaces.

If  you are using a Windows system, it  is recommended that you use OSGeo4W. This will  provide a Windows
environment to use the tool. You can get the installers here. The express installation will provide the most high
profile OSGeo4W packages. However, it will not allow for control over install location, proxies, and cache directory
selection. The advanced install will allow for more control. The PGC NDVI tool will run with either install type. After
installation of OSGeo4W, the NDVI tool can be ran through the OSGeo4W Shell. As with Linux, there are numerous
online resources for using a Windows command line interface.

Script Details
The pgc_ndvi utility runs batch image orthorectification, conversion, and pansharpening or submits them to a PBS
or  SLURM  HPC  cluster  for  processing.  First,  the  utility  applies  the  orthorectification  process  to  both  the
panchromatic (if provided) and multispectral image in a pair and then pansharpens them using the GDAL tool
gdal_pansharpen. Submission scripts to PBS and SLURM can be found at the PGC GitHub page. Including the
command “- -pbs” will submit the task to PBS, and including the command “- -slurm” will submit the task to
SLURM. When submitting a job to a cluster where there is storage local to the processing node it is recommended to
include the “- -wd” command. This will allow you to set a local working directory which will allow for increased
processing time.

A description of the commands can be found here. Information regarding common commands are detailed in the
sample workflow below.

Sample Workflow
Before you begin you will  need to gather all  your orthorectified imagery and place them in a single folder.  If  you
used the pgc_ortho utility this should automatically be done. Note for these commands that Linux users will have
forward slashes ( / ) in the pathname, and pathnames will begin with “/mnt/” instead of using the drive name as in
Windows (D:\).

Once you have gathered all orthorectified image files, you will need to open either the OSGeo4W shell, if1.
you are using Windows, or your Linux terminal if you are using Linux. Once you have opened the window,
type “python” followed by the pathname for the pgc_NDVI.py script.
C:\>python user\pathname\pgc_ndvi.py

This will  tell  the computer to use Python to run the script, which is found in the location you specified.
Dragging  and  dropping  the  pgc_NDVI.py  file  into  the  terminal  will  automatically  populate  the  file
pathname.

The next step is to identify the output bit depth. The available bit depths are 16 and 32. A larger bit2.

https://github.com/PolarGeospatialCenter/gdal-full
https://github.com/PolarGeospatialCenter/gdal-full/tree/master/install-scripts
https://askubuntu.com/questions/38661/how-do-i-run-sh-scripts
https://trac.osgeo.org/osgeo4w/
https://github.com/PolarGeospatialCenter/imagery_utils
https://github.com/PolarGeospatialCenter/imagery_utils/blob/v1.5.2/doc/pgc_ndvi.txt
https://github.com/PolarGeospatialCenter/imagery_utils/blob/v1.5.3/pgc_ortho.py


depth means that a larger array of possible color values for each pixel can be represented. The most
common output type is 32-bit float, which will constrain the NDVI value between -1 and 1. If you decide
to use a 16-bit output, the output values will be scaled from -1000 to 1000. Available options for this
command include:

Int16 – 16 bit output
Float32 – 32 bit floating point output

To designate an output bit  depth we can use the “-t”  or  “- -outtype=”  followed by one of  the
previously mentioned command options. For example:
C:\>python user\pathname\pgc_ndvi.py -t Int16
Or
C:\>python user\pathname\pgc_ndvi.py -t Float32

The last step in setting up the pgc_ndvi tool is specifying the location of the input imagery and the3.
desired output location. Type the pathname to the folder containing the orthorectified imagery followed
by the pathname to the desired output folder. You can drag and drop the folders into the terminal to
have their pathname’s appear. Lastly, make sure that the proper syntax is used (like spaces between
commands). The example below lists commands with proper syntax:
C:\>python user\pathname\pgc_ndvi.py -t Float32 D:\input\imagery\orthorectified
D:\output\folder\ndvi

To run the tool, press the Enter key. It is important to determine the exact commands you will need
before running the tool.

Additional Resources

NDVI Publication
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780024582.pdf

NDVI Information
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php

Bit Depth Explained:
https://apollomapping.com/2012/September/article8.html

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780024582.pdf
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://apollomapping.com/2012/September/article8.html

