
Metadata and Data Curation

Requirements and lessons learned from operations of Data Services for Antarctic Science

- Metadata essential for all aspects of data curation
- Many kinds of metadata: Administrative (provenance, credit), descriptive (supports discovery and identification), technical, structural and preservation metadata (DCC – UK)
- Metadata needs of data creators can be very different from those of data curators and re-users
- Define metadata in relation to it's intended use (e.g. for searching, display, science re-use, long term preservation etc).

MetaData requirements from Science User Perspective

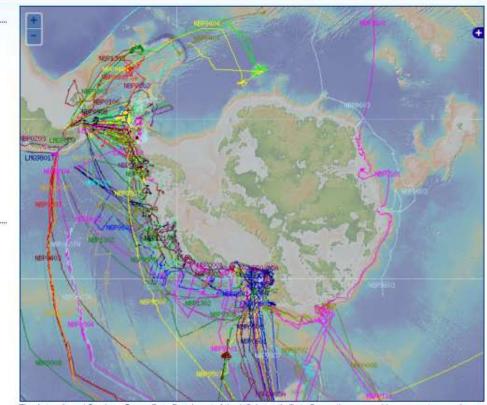
- Primary desired search capability
 Map based & data type (&temporal)
- Want to find all data types in search area
 multidisciplinary research
- Want to identify only data of interest
- Documentation of data quality
- Primary publications for further information
- Enough metadata to track provenance and ensure credit

IEDA

Antarctic Data Services:

- 1.Antarctic and Southern Ocean Data Portal http://www.marine-geo.org/portals/antarctic
- 2. USAP Data Coordination Center http://www.usap-data.org/

3. SESAR sample catalog

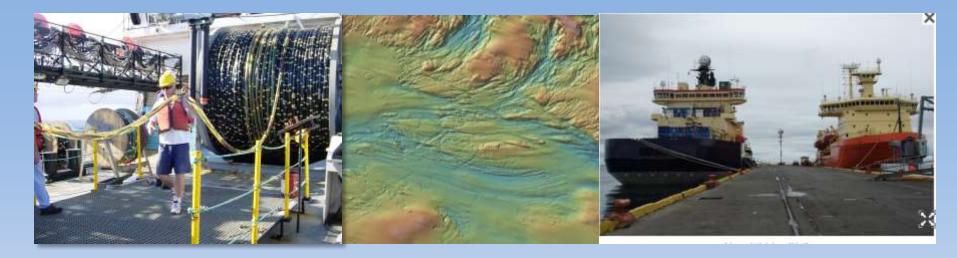


Antarctic & Southern Ocean Data Portal

Portal Links

- o Portal Home »
- o What's New
- · Project Documents
- o Related Links
- o MediaBank
- Google Earth files
- Contributors
- GeoMapApp @
- Virtual Ocean #
- EarthObserver \$
- Find Data
- References Database

List Data by Ship

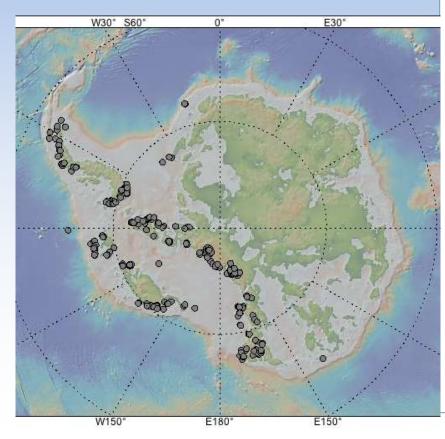


The Antarctic and Southern Ocean Data Portal, part of the US Antarctic Data Consortium g, provides access to geoscienc

www.marine-geo.org/portals/antarctic

ASODS

- Documentation
 registration and
 preservation of
 all USAP marine
 data
- Search and Download
- Investigator
 Support
- Data Analysis& Visualization


- Diverse marine data types: Bathymetry, Multi-channel Seismic, ADCP, CTD, Salinity, Side-scan, Imagery, Turbidity...
- Field and Derived data (layer thickness, geologic interps, microseism catalogs...)
- Multiple File Formats: NetCDF, SEGY/SEGD, MB, JPEG/GIFF, ASCII (many)

Data Holdings: 270,000 files, 2.8 TB, history of R/V *Palmer* and *Gould* expeditions

IEDA

Sample-Based Services SESAR, PetDB, SedDB

IGSN: ECS00000A

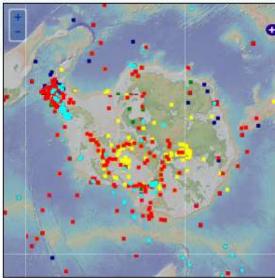
IGSN: ECS00000A Sample Name: HLY0805-DR1-001 Other Name(s): Sample Type: Individual Sample Parent IGSN: ECS000001

Description	
Material:	Not Provided
Classification:	Not Provided
Field Name:	Not Provided
Description:	interbedded sandstone/mudstone (light ochre layer, volcanic sand, manganese crust)
Age (min):	Not Provided
Age (max):	Not Provided
Collection Method:	Dredging
Collection Method Description:	Not Provided
Size:	15 x 9 x 3 cm
Geological Age:	Not Provided
Geological Unit:	Not Provided
Comment:	Not Provided
Purpose:	Not Provided
Geolocation	
Latitude	81.4148
Longitude:	-151.9654
Elevation:	-3266
Nav Type:	Not Provided
Physiographic Feature:	Not Provided
Name Of Physiographic Feature:	Not Provided
Location Description:	Not Provided
Locality:	Not Provided
Locality Description:	Not Provided
Country:	Not Provided
State/Province:	Not Provided
County:	Not Provided
City:	Not Provided
Collection	
Field Program/Cruise:	HLY0805
Platform Type:	Ship
Platform Name:	USCGC HEALY
Platform Description:	Not Provided
Launch Type:	Not Provided
Launch Platform Name:	Not Provided
Launch ID:	Not Provided

US Antarctic Program Data Coordination Center

Welcome to the U.S. Antarctic Program Data Coordination Center

The Center's mission is to assist scientists in finding Antarctic scientific data of interest and submitting data for long-term preservation in accordance with their obligations under the National Science Foundation (NSF) Division of Polar Programs (PLR) Data Policy. The USAP-DCC is part of the <u>U.S. Antarctic Data</u> Consortium

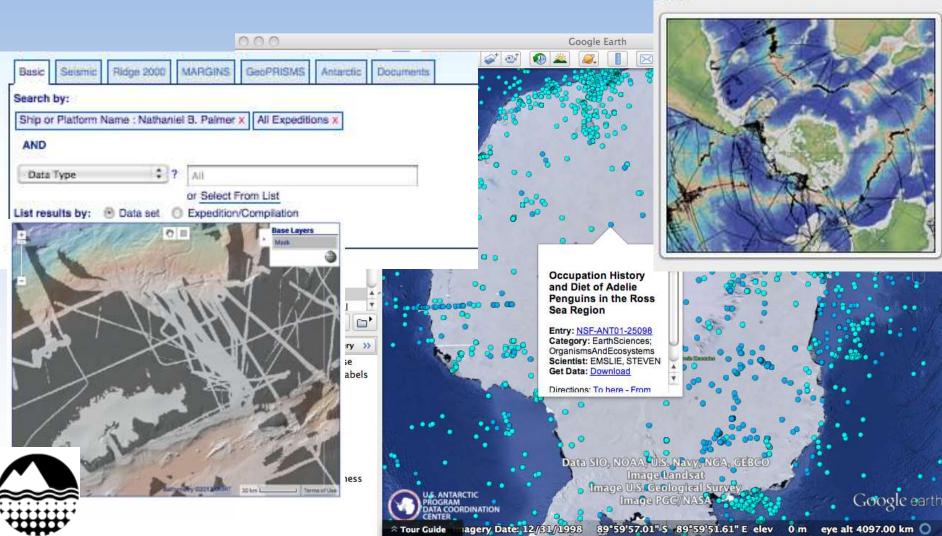

RECENT NEWS

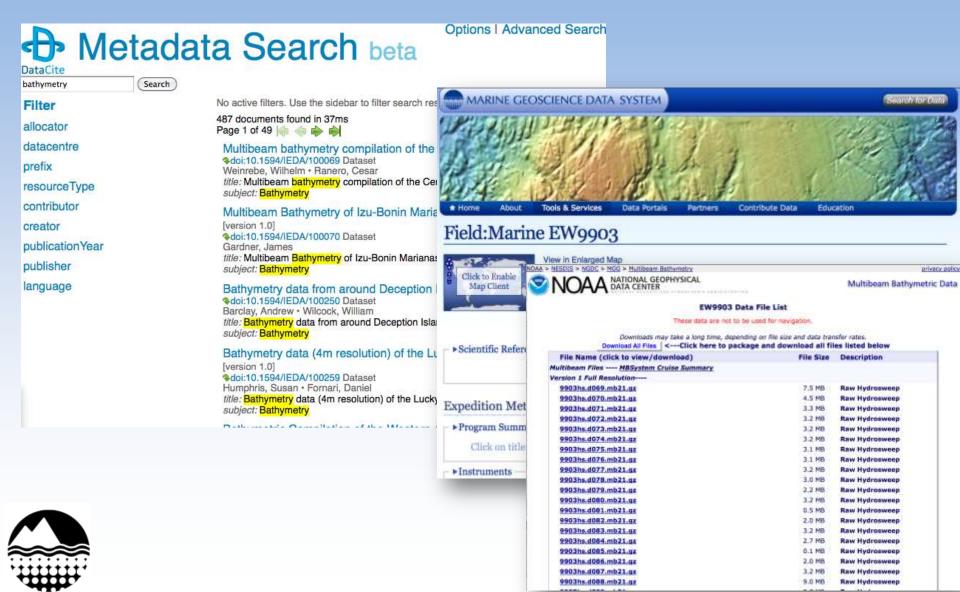
12/2012 - Launched interactive USAP map for exploring data.	
10/2012 - LDEO now a branch of the Antarctic Seismic Data	
Library System.	
07/2012 - Created and launched the U.S. Antarctic Data	
Consortium webpage.	
07/2012 - Presented results at the SCAR SC-ADM meeting of	
Antarctic data managers (Portland).	

RECENT DATA

(2013-09-03) 11-42083 Kyle, Philip	0
(2013-08-28) 08-38773 and 04-42769 Amsler, Charles;	1
McClintock, James	
(2013-07-09) 10-43669 Yuan, Xiaojun	
(2013-05-06) 08-39053 Ackley, Stephen	*

Use the interactive map at right or the Search page to find and download specific data sets.




- All NSF funded research documented within GCMD/AMD
- Signatories of Antarctic treaty submit
- USAP-DCC Assists ANT investigators with NSF data obligations, DIF creation &data submission
- Tools for data discovery and access including web services

Metadata supports diverse Data Access options: Search Portal, Client Viz and Analysis Applications, Web Services

Metadata supports data publication, domain science re-use, education, data preservation

Lessons Learned – Metadata

- Data contribution from scientists with comprehensive metadata for full range of needs is challenging
- Standards do not exist for many data typesdisciplinary data centers must be involved in developing standards
- New requirements arise from different stakeholders (e.g. NSF, CI community)
- Active use of repository is essential for quality of metadata

Lessons Learned – Metadata

- Work directly with instrument/facilities operators where ever possible/applicable- PIs are busy!
- Harvest existing resources for metadata where possible
- Need tools for metadata collection in the field
- Annotation tools needed for scientists to add to and correct metadata

Lessons Learned - Operating Principles

CI enables research and is rapidly evolving

- Existence of disciplinary and backbone databases are essential to take advantage of these developments
- Data holdings need to be accessible via programmatic interfaces
- Data systems need to adapt/evolve must be agile (difficult given funding structures)

Lessons Learned - Operating Principles

Incentives for scientists to contribute are essential

- Funding agency sticks –not so effective
- Attribution is essential
- CI tools needed to improve scientists ability to visualize and analyze their own data and other multi-disciplinary data (beyond discovery)
- Data Publication attribution and credit

Lessons Learned – Operating Principles

To build a system that will be used requires close interaction with Science Users (data creators and consumers)

- Custom interfaces for user communities may be needed
- Quality of system depends on usage (errors and weakness revealed through use)
- Value of system increases with longevity and growth in data holdings - requires contribution and engagement of user community and sustained funding commitments.