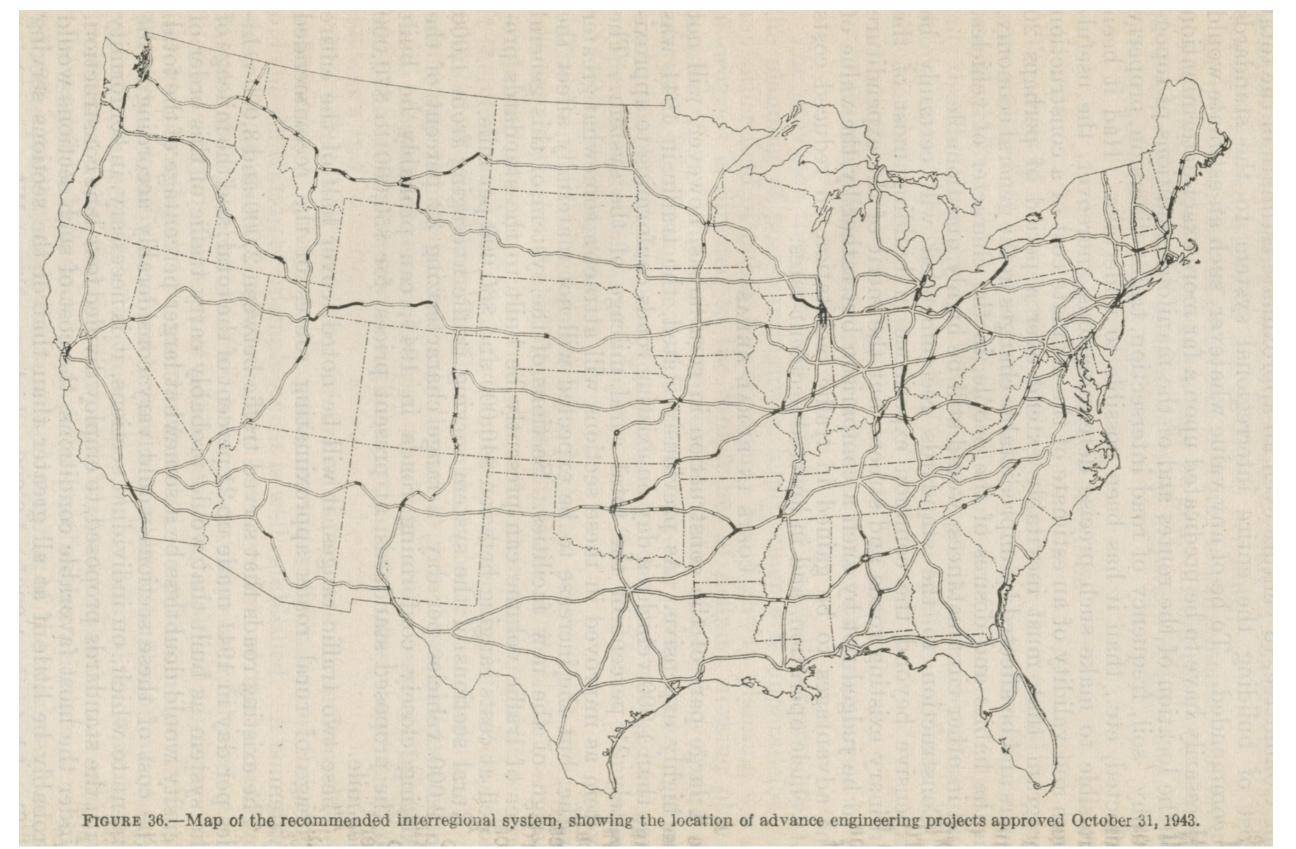


Infrastructure, Curation, and Metadata


Mark A. Parsons

NSF Workshop on Cyberinfrastructure for Polar Sciences 10 September 2013

Unless otherwise noted, the slides in this presentation are licensed by Mark A. Parsons under a Creative Commons Attribution-Share Alike 3.0 License

Rensselaer

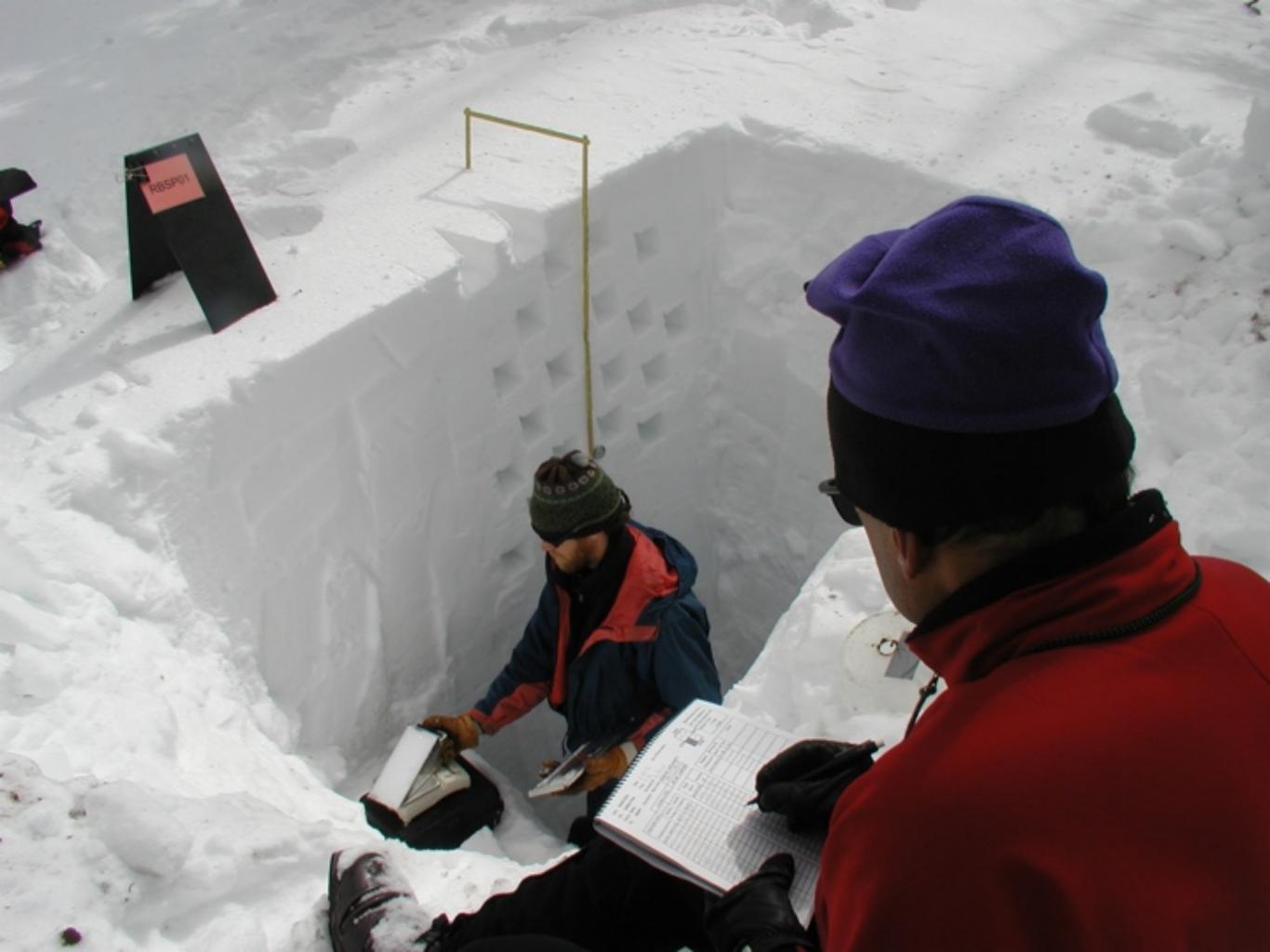
From Interregional Highways: Message from the President of the United States Transmitting a Report of the National Interregional Highway Committee, Outlining and Recommending a National System of Interregional Highways, 12 Jan. 1944. CC-BY Eric Fischer http://www.flickr.com/photos/walkingsf/8270270785/

http://www.shockblast.net/aerial-photographs/urban-sprawl-by-christophgielen-arizona/

Infrastructure is

Relationships, interactions, and connections between humans, technologies, and institutions

Rensselaer


Understanding Infrastructure: Dynamics, Tensions, and Design 2007 Paul Edwards, Steven Jackson, Geoffrey Bowker, and Cory Knobel http://hdl.handle.net/2027.42/49353

Example of Snow Pit Data

We start with this:

ISA: Rabbit Eau BA: Buffalo Pa actor: Bravo It: RBSP5	188	Time: 10 ; Surveyed By	-25 - 03 54 :: HYMSTRA	A/ MULI	SA UTIM Boundaries:	4,48 B A	8,891 C D	358,		mit	axis of 3 g small, med	a: Measure short and long trains representative of a dium and large grain in layer the: N = New
	a l'h		UTM - E	UTM - N			7,891					R = Rounds
		on (UTM):	357,414	4,488,859	- 20 M ALLU	npo	4	ON	GP.	5	5 <u> </u>	F = Facets
otal Depth (cm):	270		7451	887	3				-		1	M = Mixed
	Density	Density	Height	100.000	Stratigraphy	Axis		n Size		Grain		Comments
Ht above ground	Profile A	Profile B	above	Temperature	Ht above ground	type		est 0.1		Туре		
op (cm) - bottom (cm)		kg m-3	ground (cm)		top (cm) - bottom (cm)		1	Med	Lg 2			1
270-260	71	64	270	-3	27D 223	short		.2	14	N	NE	WYNOW
260 - 250	76	75	260	-10		long		1	.2	à		in a la
250 - 240 240 - 230	93	88	250	-10	223-170	short	1	12	.1	R	1413	S WEEKS CHOW
		112	230	-10		short	1	•)	.2	0	enc	VINIE SNOWS
230-220	The second se	118	220	-10	170 - 14-2	long		.2	.4	+	MEL	VIDUS SNOWS
210-200		138	210	-10	1.0	short	200	. 3	. 15	R		
200-190	154	154	200	-9	142 - 80	long	. 2	.5	.9	F	1000	AD FALETS
190-180	178	183	190	-8	1.0-35	short	,4	,7	.10	/M	95%	ROUXBED
186-170	24	224	180	- 8	40152	long		.6	1.0	1.1		
170 - 160	263	249	170	-7	35 . 0	short	4	. 6	1.2	M		O PRUNDS
160-150	273	275	160	-7	27 0	long	14	1.0	2.0	()	15%	IS I DE STED
150-140	297	291	150	-6								
140-130	291	296	140	-6		0	1				DIRECTIO	
130-120	320	320	130	-5	Surface Wetness	D	a construction of					/), Very Wet (VW)
120-110	327		120	-4	Surface Roughness	T					n? Yes (Y)	or No (N)
110 - 100	338	320	100	-4	Soil Sample A		1				ore (cm)	ODER
100 - 90	364		100	-4	Soil Sample B	+	1				5A and RB	
92 - 10	369	376	90	-3	Canopy		-				h canopy?	
76 - 60.	380	363	80	-3	Yes/Coniferous (YC), Yes/Coniferous with snow (YCS), or Yes/Deciduous (YD) Comments: PIT BETWRIZED 2 ILOWIS OF TALL TREES.							

Example of Snow Pit Data

And create this:

Summary Table

PIT	IOP	SECTOR	DATE	TIME	UTME	UTMN	SWET	SRUF		CNHT	DEPTH	SWE	DNS_LYRS	DNS_AVG	
										cm	cm	mm		kg/m^3	
rbsp01	iop1	alpha	20020224	1115	357156	4487926	d	У		-999	214	637	22	298	
rbsp02	iop1	alpha	20020224	930	357211	4488306	d	У		-999	200	587	20	293	
rbsp03	iop1	bravo	20020224	928	357197	4488466	d	У	• • •	-999	180	514	18	286	• • •
rbsp04	iop1	bravo	20020224	1330	357188	4488887	d	У		-999	225	667	23	298	
rbsp05	iop1	bravo	20020224	1528	357414	4488859	d	У		-999	212	679	22	320	

Stratigraphy Table

PIT_NAME	IOP#	TOP	BOT	SM-SHT	MD-SHT	LG-SHT	SM-LNG	MD-LNG	LG-LNG	GRN-TYPE COMMENT			
		cm	cm	mm	mm	mm	mm	mm	mm				
rbsp01	iop1	214	205	0.2	0.5	0.7	0.4	0.6	0.8	n QC(000)			
rbsp01	iop1	205	163	0.4	1	1	0.5	1	1.5	m QC(000)			
rbsp01	iop1	163	119	0.2	0.5	0.7	0.4	0.6	1.3	m QC(000)	Ice lens	@119	cm.
rbsp01	iop1	119	19	0.3	0.3	0.5	0.3	0.7	1.2	m QC(000)			
rbsp01	iop1	19	0	0.4	0.5	2	0.5	0.8	2	f QC(000)			

Density Table

PIT_NAME	IOP#	TYPE	TOP	BOT	DENSITY-A	DENSITY-B	DENSITY-AVG	QC
			cm	cm	kg/m^3	kg/m^3	kg/m^3	
rbsp01	iop1	С	214	204	104	101	102.5	QC(000)
rbsp01	iop1	С	204	194	147	140	143.5	QC(000)
rbsp01	iop1	С	194	184	142	143	142.5	QC(000)
rbsp01	iop1	С	184	174	161	158	159.5	QC(000)

Temperature Table

PIT_NAME	IOP#	HEIGHT	TEMPERATURE	QC
		CM	deg-C	
rbsp01	iop1	214	-2	QC(000)
rbsp01	iop1	204	-6	QC(000)
rbsp01	iop1	194	-6	QC(000)
rbsp01	iop1	184	-7	QC(000)

Rensselaer

Curation is

continual and conscious improvement of data.

Curation matters

- Embedding "data wranglers" in the field significantly improved data quality and completeness. (~20% of the data sheets had issues corrected in the field that would not have been correctable later).
- Reveals and documents tacit knowledge. Can even uncover science questions.
- Integrated much more than the field data with common grids and formats
 - "Standard" formats often do not exist and need to be created by the community. Sometimes you need multiple formats.
- A mediated relationship between user and collector.
- Need to include curators in data collection even if they are not in the field.
- Get to know your local curator.

Metadata are

Everything necessary to make data independently understandable by a designated community.

Infrastructure is comprised of relationships.

Curators create and enhance relationships.

Metadata is often the information shared (often tacitly) in those relationships.

A standard sensor format?

- Temporally varying sensors (e.g. a borehole)
- Spatially varying sensors (e.g. a transect)
- Temporally and spatially varying sensors (e.g. a drifting buoy)

Thank You parsom3@rpi.edu